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ICPL: Intelligent Cooperative Planning and Learning

for Multi-agent Systems

AFOSR # FA9550-09-1-0522

Jonathan P. How, Emilio Frazzoli, and Nicholas Roy
Department of Aeronautics and Astronautics

Massachusetts Institute of Technology

Abstract
The research objective was to develop a new planning approach for teams of multiple UAVs
that tightly integrates learning and cooperative control algorithms at multiple levels of the
planning architecture. The research results enabled a team of mobile agents to learn to
adapt and react to uncertainty in situational awareness and unforeseen future events and
thus successfully complete their missions in geographically extended and uncertain theaters
of operation. Among application areas, we considered learning approaches for persistent
patrolling games, in which one class of agents places point targets in a given region, and a
second class of agents seeks to minimize the time necessary to discover such targets, using
limited-range sensors. We analyzed equilibrium strategies in this class of problems and
their stability. Our efforts provide a fundamental theory and architecture for the design of
intelligent cooperative control systems for heterogeneous teams and the demonstration of
the value of the theory through software and hardware experiments.

1 Research Summary
The following list provides the contributions of our research.

1. Incremental Feature Dependency Discovery (iFDD): We introduced iFDD as a
general approach for expanding a linear function approximation of a value function from
an initial set of binary features to a more expressive representation that incorporates
feature conjunctions. Our algorithm is simple to implement, fast to execute, and
can be combined with any online reinforcement learning technique that provides an
error signal. We provided asymptotic and rate of convergence analysis for iFDD when
combined with TD learning. Furthermore, we empirically showed that iFDD can scale
to UAV mission planning problems with hundreds of millions of state-action pairs
where other adaptive methods do not scale [1, 2].

2. Intelligent Cooperative Control Architecture (iCCA): We introduced iCCA
as a framework for learning and adapting cooperative control strategies in real-time
stochastic domains. The framework allows cooperative planners to guide learners to
find good policies with less number of samples, while mitigating the risk involved in
pure learning strategies. We extended our framework in three areas: 1) integrated
learning methods with implicit policy forms, 2) supported stochastic risk models to
realize probabilistic safety, and 3) enabled adaptive modeling of the system dynam-
ics. We successfully demonstrated the performance of our approach by simulating
limited-fuel UAVs aiming for stochastic targets in mission planning scenarios involving
uncertainty [3–7].
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3. Data-Limited Model-Based Reinforcement Learning We introduced a novel
method for batch reinforcement learning with limited amount of data. Rather than
finding the model through the maximum likelihood concept, our approach directly
searches in the space of possible models that result in capable policies. We demon-
strated the applicability of the new approach in a physical hydrodynamic card-pole
problem with a very complex physics model.

4. Incremental Sampling-based Algorithms for Planning and Learning Under
Uncertainty We studied a zero-sum game formulation of a dynamic vehicle routing
problem: a system planner seeks to design dynamic routing policies for a team of
vehicles to minimize the average waiting time of demands that are strategically placed
in a region by an adversarial agent with unitary capacity operating from a depot. We
characterized an equilibrium in the limiting case where vehicles travel arbitrarily slower
than the agent (heavy load). We showed that such an equilibrium is constituted by a
routing policy based on performing successive TSP tours through outstanding demands
and a unique power-law spatial density centered at the depot location [8].

5. Learning in Persistent Search: A Constrained Game Approach We considered
a class of dynamic vehicle routing problems, known as persistent search [9], in which
a vehicle with limited sensor range aims to detect targets that arrive dynamically over
time. A common assumption made in such settings [10–12] is that the distribution
of arrivals is known a priori to the searcher. Both the analysis and tools that have
been developed previously have heavily relied on the knowledge of the distribution.
In our recent work [8], we relax some of these assumptions and provide performance
guarantees by modeling the problem in the language of constrained games. To do so, we
assume that the searcher faces an environment in which the samples are distributed in
an adversarial manner that is consistent with history. In other words, we find the worst-
case model of nature that can explain the past observations and find a search policy
that is optimal against such adversarial model. The resulting optimization objective
is non-convex, but can be convexified in special cases and, in general, has a special
structure that allows good approximations with SOS methods [13]. The resulting
solution can, under mild assumptions, guarantee a minimum level of performance.

2 Online Discovery of Feature Dependencies
Optimal planning under uncertainty is a challenging problem facing practitioners dealing
with real-world domain. MDPs [14] facilitate a mathematical framework for solving these
problem, but unfortunately for realistic multi-agent planning, the size of the state space
is exponential in the number of agents and researchers quickly realized [15] the limitation
of tabular representations and introduced approximations to cope with the complexity and
boost the learning speed through generalization. Finding the “right” representation is a
critical milestone to scale the existing MDP solvers to larger domains. Due to their ease of
use, theoretical analytical, and empirical results, the linear family of function approximators
have been favored in the literature [15, 16]. In this setting, the target function is approxi-
mated as the linear combination of a set of feature vectors. Many approaches try to find the
right set of features offline [17, 18], but online methods enjoy the advantage of adaptability
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to dynamic environment and often the case lower computational complexity [19]. Hence
these methods have improved the learning speed of existing reinforcement learning (RL)
algorithms in low dimensional domains, yet existing online expansion methods do not scale
well to high dimensional problems. Our research has explored the conjecture that one of the
main difficulties limiting this scaling is that features defined over the full-dimensional state
space often generalize poorly. Hence, we introduced incremental Feature Dependency Dis-
covery (iFDD) as a computationally-inexpensive method for representational expansion that
can be combined with any online, value-based RL method that uses binary features. Unlike
other online expansion techniques, iFDD creates new features in low dimensional subspaces
of the full state space where the approximation error persist.

The iFDD algorithm gradually captures nonlinearities within the linear approximation
framework by introducing feature conjunctions as new binary features. We showed that,
especially in high-dimensional domains, gradually adding feature dependencies (e.g. fea-
tures corresponding to low dimensional subspaces of the full state space), encourages early
generalization, which can speed up learning. The algorithm begins by building a linear ap-
proximation to the value function online using the initial set of binary features. It tracks the
sum of absolute value of the approximation errors for all simultaneously activated feature
pairs. We term the conjunction of each tracked feature pair as a potential feature and the
cumulative approximation error associated with it as relevance. Once a potential feature’s
relevance exceeds a user-defined threshold, iFDD discovers that feature as a new binary fea-
ture, thus capturing the nonlinearity between the corresponding feature pair. The algorithm
proceeds in three steps:

1. Identify potential features that can reduce the approximation error,

2. Track the relevance of each potential feature, and

3. Add potential features with relevance above a discovery threshold to the pool of features
used for approximation.

Fig. 1 shows iFDD in progress. The circles represent initial features, while rectangles
depict conjunctive features. The relevance of each potential feature f , ψf , is the filled part
of the rectangle. The discovery threshold ξ, shown as the length of rectangles, is the only
parameter of iFDD and controls the rate of expansion. This parameter is domain-dependent
and requires expert knowledge to set appropriately. However, intuitively lower values encour-
age faster expansion and improve the convergence to the best possible representation, while
higher values slow down the expansion and allow for a better exploitation of generalization.
While the ideal value for ξ will depend on the stochasticity of the environment, we found
our empirical results to be fairly robust to the value of the discovery threshold.

We focus on iFDD integrated with TD learning, but any on-line, value-based RL method
could supply the feedback error. Notice that, if the initial features are such that no function
approximation – linear or nonlinear – can satisfactorily approximate the underlying value
function, then applying iFDD will not help. For example, if a key feature such as an agent’s
location is not included in the initial set of features, then the value function approximation
will be poor even after applying iFDD.
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Fig. 1: A snapshot of iFDD: Initial features are circles, conjunctive features are rectangles.
The relevance ψf of a potential feature f is the filled part of the rectangle. Potential features
are discovered if their relevance ψ reaches the discovery threshold ξ.

2.1 Algorithm Details

The process begins with an initial set of binary features; let F be the current set of features
used for the linear function approximation at any point in time. We use φf (s) = 1 to indicate
that feature f ∈ F is active in state s. After every interaction, we compute the local value
function approximation error δt (e.g. the TD error), the current feature vector φ(st), and
update the weight vector θ (in the TD case, θt+1 = θt + αtδtφ(st), where αt is the learning
rate). Next, Algorithm 1 is applied to discover new features.

The first step in the discovery process (lines 1,2) identifies all conjunctions of active
features as potential features.1 Considering only conjunctive features is sufficient for iFDD
to converge to the best approximation possible given the initial feature set; conjunctive
features also remain sparse and thus keep the per-time-step computation low. The relevance
ψf of each potential feature f = g ∧ h is then incremented by the absolute approximation
error |δt| (line 4). If the relevance ψf of a feature f exceeds the discovery threshold ξ, then
feature f is added to the set F and used for future approximation (lines 5,6).

The computational complexity of iFDD can be reduced through a sparse summary of all
active features. Note that if feature f = g ∧ h is active, then features g and h must also
be active. Thus, we can greedily consider the features composed of the largest conjunction
sets until all active initial features have been included to create a sparse set of features
that provides a summary of all active features.2 For example, if initial features g and h

1Conjunctions are stored in a “flat” representation, so there is only one conjunctive feature a ∧ b ∧ c for
the conjunction of features a ∧ (b ∧ c) and (a ∧ b) ∧ c.

2Finding the minimum covering set is NP-complete but greedy selection gives the best polynomial time
approximation.
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Algorithm 1:Discover

Input: φ(s), δt, ξ,F, ψ
Output: F, ψ

1 foreach (g, h) ∈ {(i, j)|φi(s)φj(s) = 1} do
2 f ← g ∧ h
3 if f /∈ F then
4 ψf ← ψf + |δt|
5 if ψf > ξ then
6 F← F ∪ f

Algorithm 2:Generate Feature Vector (φ)

Input: φ0(s),F
Output: φ(s)

1 φ(s)← 0̄
2 activeInitialFeatures ← {i|φ0

i (s) = 1}
3 Candidates ← SortedPowerSet(activeInitialFeatures)
4 while activeInitialFeatures 6= ∅ do
5 f ← Candidates.next()
6 if f ∈ F then
7 activeInitialFeatures ← activeInitialFeatures rf
8 φf (s)← 1

9 return φ(s)

are active in state s and feature f = g ∧ h has been discovered, then we set the φf (s) = 1
and φg(s), φh(s) = 0 since g and h are covered by f . Algorithm 2 describes the above
process more formally: given the initial feature vector, φ0(s), candidate features are found
by identifying the active initial features and calculating its power set (℘) sorted by set sizes
(lines 2,3). The loop (line 4) keeps activating candidate features that exist in the feature set
F until all active initial features are covered (lines 5-8). In the beginning, when no feature
dependencies have been discovered, this function simply outputs the initial features.

Using the sparse summary also can help speed up the learning process. Suppose there
are two features g and h that, when jointly active, result in high approximation errors.
However, if one of them is active, then the approximation error is relatively low. Let f be
the discovered feature f = g∧h. In our sparse summary, when g and h are both active in the
initial representation, we set φf = 1 and φg, φh = 0. If only one is active, then φf = 0. Only
non-zero features contribute to the value function approximation, so the learning update
rule updates θf only if both g = 1 and h = 1. Otherwise, θf remains unchanged when θg
or θh are updated. By separating the learning process for the states in which the feature
conjunction f = g ∧ h is true from states in which only one of the features g or h is true, we
can improve our value function approximation estimates for the more specific cases without
affecting the generalization in other states. The iFDD algorithm initializes the coefficient for
a new feature f as θf = θg +θh, so that the value function approximation remains unchanged
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Figure 2. Empirical results of Sarsa algorithm using various representational schemes in in four RL domains: Inverted Pendulum,
BlocksWorld, Persistent Surveillance, and Rescue Mission.
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Figure 4. Average final feature counts. ATC and SDM, even using
more features, performed poorly on high-dimensional examples.
The black bar depicts the total number of state-action pairs.

saved when the medic UAV is at their node and the com-
munication UAV is no farther than one edge away to re-
lay back information. The medic UAV consumes a unit of
fuel per movement or hover; the communication UAV may
move (costs one fuel cell) or perch (costs nothing). Initial
features were the fuel and position of each UAV, the com-
munication UAV mode, and the rescue status at each node.
The total state-action pairs exceeded 200 million. γ was set
to 1.

The team received +1 for each person rescued, −0.1 for
each unit of fuel spent, and −23 if not at base after 10 time
steps or depleting all fuel. Fig. 2(d) shows the tabular rep-
resentation was crippled by the scale of the problem. ATC
and SDM fared somewhat better by capturing the notion of
crashing early on but could not capture the complex reward
structure. Learning with only the initial features proceeded
quickly for the first 10, 000 steps, showing that the initial
features are largely independent for this domain. However,
after 20, 000 steps, iFDD’s richer representation allowed it
to encode a policy that outperformed all other methods.

Fig. 4 shows the average final feature counts for each do-
main. In Sec. 3.2, we showed iFDD can lead to a represen-
tation with more features than the tabular, but in the UAV
domains, iFDD discovered approximately two orders of
magnitude fewer features than tabular. Even when ATC and
SDM had more features than iFDD, they still did not match
iFDD’s performance (except for SDM on pendulum).

Finally, to verify the effectiveness of error guided repre-
sentation expansion, we compared iFDD with a random

Table 1. The final performance with 95% confidence intervals of
iFDD and random expansion with equal number of features.

Expansion Scheme
Domain Random iFDD

Inverted Pendulum 2953 ± 30 3000 ± 0
BlocksWorld −0.80 ± 0.06 −0.24 ± 0.10
Persistent Surveillance 174 ± 44 280 ± 49
Rescue Mission 10 ± .74 12 ± .75

approach that adds feature conjunctions out of the poten-
tial set of features uniformly. For a fair comparison, we
replaced iFDD’s discovery threshold with a fixed discov-
ery rate shared with the random approach. Table 1 shows
the mean final performance of both methods (100 runs
per domain except Persistent Surveillance with 30 runs);
non-overlapping 95% confidence intervals show iFDD was
significantly better than random expansion in all domains.
Both methods took roughly the same computation time.5

5. Discussion and Related Work
Adaptive Function Approximators (AFAs) have been stud-
ied for more than a decade (see Buşoniu et al., 2010, Sec-
tion 3.6.2). We focused on refinement AFAs with linear
and sublinear per-time-step complexities, amenable to on-
line settings. We empirically showed that iFDD scales RL
methods to high-dimensional problems by creating features
in low dimensional subspaces of the full state space. For
example, in the UAV domain, when a new feature con-
junction of low fuel and being at base is discovered, this
feature is defined in the two-dimensional subspace of fuel
and location, ignoring all other dimensions. Previous work
has done this process manually through tile coding (Sutton,
1996).

Both ATC and SDM create features in the full dimensional
space limiting generalization as the dimensionality grows.
While batch AFAs (Keller et al., 2006; Mahadevan et al.,
2006; Parr et al., 2007) are promising, their computational
demand often limit their application in online settings. Fur-

5Table 1 and Figure 2 differ because the discovery rate was
set low enough to ensure a non-empty pool of potential features
at all time steps. See our technical report for more information at
http://acl.mit.edu/iFDD-Tech.pdf

(b) Empirical Results

Fig. 2: Heterogeneous UAV scenario and the step based performance of the Sarsa method
with feature discovery (green), without feature discovery (blue), and using the full represen-
tation from the beginning (red).

when first adding a feature. We provided asymptotic and guaranteed rate of convergences
analysis together with the computational complexity guarantees for iFDD [1, 2].

The usability of our approach in large state space such as UAV mission planning was
confirmed by comparing the effectiveness of iFDD with Sarsa [14] against representations
that (i) use only the initial features, (ii) use the full tabular representation, and (iii) use
two state-of-the-art representation-expansion methods: adaptive tile coding (ATC), which
cuts the space into finer regions through time [20], and sparse distributed memories (SDM),
which creates overlapping sets of regions [21]. Fig. 2(a) depicts a rescue mission in which
a heterogeneous team of UAVs plan to rescue as many people as possible highlighted as
positive numbers close to each node. To carry out the rescue at a particular node, the
medic UAV should visit the node while the communication UAV is no further than one edge
from that node in order to provide satellite information. For nodes with stochastic rescue
outcomes, the numbers inside clouds represent the success rate. Planning space for both of
these domains exceeds hundred million possibilities. Fig. 2(b) shows the performance of all
representation techniques, based on the number of interaction steps with the system. Adding
useful features, iFDD allowed the agent to learn the task substantially better than the other
methods. State-of-the-art method guided the agent to believe that in both domains sending
out UAVs is dangerous and should be avoided, hence the zero performance [1].

In the bigger picture, our theoretical results provided a fundamental insight on why
moving from a coarse to fine representation is a sound approach for learning, which can
explain empirical observations in both computer science and brain and cognitive science
communities. In particular, our findings can explain the empirical results of Whiteson et
al. [20], in which starting with one big feature and adaptively increasing the number of
features, provided faster learning compared to starting with a fixed learned representation.
At the same time, our theoretical results shed light on the observation of why human subjects
first used coarse features for a task of classification and later used finer features as they gained
more experience [22].
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3 Merging Cooperative Planning and Learning
We developed a constructive relationship between a cooperative planner and a learner to
mitigate the learning risk while boosting the asymptotic performance and safety of agent
behavior. Our approach is an instance of the intelligent cooperative control architecture
(iCCA) in Fig. 3 [4, 5]. The iCCA facilitates a synergistic integration of (i) cooperative
planners that provide safe baseline capability for achieving challenging multi-agent mission
objectives and (ii) learning algorithms that can improve the long-term performance of the
system in real-world applications. In this framework, a learner initially follows a “safe”
policy generated by a cooperative planner. The learner incrementally improves this baseline
policy through interaction, while the performance analysis module avoids behaviors deemed
to be “risky”.

3.1 Stage 1

In the first stage of this research, we considered the most basic components needed to realize
the iCCA framework. In particular, we assumed that I) the risk model is deterministic, II)
the learning algorithm has an explicit parameterization for the policy which can be directly
adjusted, and III) the approximated dynamics model is fixed [4]. As a result given the
model of the system, a single simulated trajectory was sufficient to predict the risk involved
in following a certain policy. In order to guide the learner early in the process, we initialized
the learner’s policy parameters in a way to match the planner’s policy. Later on the learning
algorithm could deviate from the planner’s policy by reflecting back on the past experiences.

We verified the applicability of the iCCA framework for the UAV scenarios shown in Fig-
ure 4-(a), where a team of homogeneous UAVs carry out a mission which involves stochas-
ticity. The green node represents the base, while blue nodes indicate target locations. Re-
warding locations are tagged with a positive number. Notice that some nodes have time
constraints shown as limits in square brackets. At the same time visiting a location by itself
does not guarantee the completion of the task. Cloud figures on the top of each location dic-
tates the probability of success for a UAV visiting the corresponding node. Finally the fuel
capacity of each UAV is limited and the mission would fail with huge penalty if any of the
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Fig. 4: (a) Mission scenarios of interest: A team of two UAVs plan to maximize their
cumulative reward along the mission by cooperating to visit targets. Target nodes are shown
as circles with rewards noted as positive values and the probability of receiving the reward
shown in the accompanying cloud. Note that some target nodes have no value. Constraints
on the allowable visit time of a target are shown in square brackets, (b,c) the step based
performance of the CBBA, Actor-Critic and CBBA.

UAVs fail to be at the base by the end of the mission horizon. In particular, we took advan-
tage of the consensus-based bundle algorithm (CBBA) [23] for the planner, while using the
Natural Actor-Critic method [24] for the learning module. 4-(b) depicts the performance of
the optimal solution calculated using backward dynamic programming, CBBA, actor-critic
and iCCA based on the number of interactions with the domain. Results are averaged over
30 runs. We can see the advantage of the iCCA method over its individual components:
CBBA and actor-critic. This is due to the fact that iCCA explores “interesting” areas of the
state-space while CBBA covers for the cases where actor-critic component can not provide
a “safe” action. Finally, Figure 4-(c) shows the optimality of each method measured by the
dynamic programming solution. Putting both learning and planning components together,
iCCA framework could boost the performance of the best individual component by about
10%.

3.2 Stage 2

The second stage of this research [3] relaxed assumption I: the iCCA framework integrated
learning schemes with implicit policy forms (e.g. SARSA [25]). The idea is motivated by the
concept of the Rmax algorithm [26]. The approach can be explained through the mentor-
protégé analogy, where the planner takes the role of the mentor and the learner takes the
role of the protégé. In the beginning, the protégé does not know much about the world,
hence, for the most part s/he takes actions advised by the mentor. While learning from such
actions, after a while, the protégé feels comfortable about taking a self-motivated actions as
s/he has been through the same situation many times. Seeking permission from the mentor,
the protégé could take the action if the mentor thinks the action is safe. Otherwise the
protégé should follow the action suggested by the mentor.

Algorithm 3 details the new cooperative learning process. On every step, the learner
inspects the suggested action by the planner and estimates the “knownness” of the state-
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Algorithm 3: Cooperative Learning-2

Input: s, r
Output: a

1 a ∼ πp(s) /* CooperativePlanner */

2 knownness← min{1, count(s,a)
K }

3 if rand() < knownness then
4 a′ ∼ πl(s) /* Learner */

5 if safe(s, a′) then
6 a← a′

7 else
8 count(s, a)← count(s, a) + 1

9 learner.update(s, r, a)
10 return a

action pair by considering the number of times that state-action pair has been experienced
following the planner’s suggestion. The K parameter controls the transition speed from
following the planner’s policy to following the learner’s policy. Given the knownness of the
state-action pair, the learner probabilistically decides to select an action from its own policy.
If the action is deemed to be safe, it is executed. Otherwise, the planner’s policy overrides
the learner’s choice (lines 4-6). If the planner’s action is selected, the knownness count of the
corresponding state-action pair is incremented. Finally the learner is executed depending on
the choice of the learning algorithm. Note that any control RL algorithm, even the Actor-
Critic family of methods, can be integrated with cooperative planners using Algorithm 3 as
line 9 is the only learner-dependent line, defined in the general form.

We empirically tested the new extension by combining CBBA [23] with Sarsa [25] and
Natural Actor-Critic (NAC) [24]. Resulting methods are named CSarsa and CNAC respec-
tively. Fig. 5-(a) shows the mission scenario of interest: a team of two limited fuel UAVs
plan to maximize their cumulative reward along the mission by cooperating to visit targets.
Target nodes are shown as circles with rewards noted as positive values and the probability
of receiving the reward shown in the accompanying cloud. Note that some target nodes have
no value. Constraints on the allowable visit time of a target are shown in square brack-
ets. Fig. 5-(b,c) shows the result of NAC, Sarsa, CBBA, CNAC, and CSarsa algorithms at
the end of the training session in the UAV mission planning scenario. Cooperative learners
(CNAC, CSarsa) performed very well with respect to overall reward and risk levels, improv-
ing the performance of the baseline CBBA planner up to 30%. Finally, Fig. 5-(d) depicts
the risk involved in executing each of the approaches after the learning phase. As expected
pure learning strategies (NAC, Sarsa) has more than 90% risk as they do not restrict their
exploration. While executing CBBA involves about 25% risk, cooperative learners could
increase the reliability of the system up to 8%.

3.3 Stage 3

In the final stage, we closed the feedback loop in our system completely, by relaxing assump-
tions II and III, allowing the risk analysis module to support stochastic risk models and the
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Fig. 5. (a) Mission scenarios of interest: A team of two UAVs plan to maximize their cumulative reward along the mission by cooperating to visit targets.
Target nodes are shown as circles with rewards noted as positive values and the probability of receiving the reward shown in the accompanying cloud. Note
that some target nodes have no value. Constraints on the allowable visit time of a target are shown in square brackets. (b,c) Results of NAC, Sarsa, CBBA,
CNAC, and CSarsa algorithms at the end of the training session in the UAV mission planning scenario. Cooperative learners (CNAC, CSarsa) perform
very well with respect to overall reward and risk levels when compared with the baseline CBBA planner and the non-cooperative learning algorithms.

has been extended to stochastic system dynamics where the
exact world model is not known, and (2) learners without a
separate policy parametrization can be integrated in the iCCA
framework through the cooperative learning algorithm. Using
a pedagogical GridWorld example, we explained how the
proposed algorithms can improve the performance of existing
planners. Simulation results verified our hypothesis in the
GridWorld example. We finally tested our algorithms in a
multi-UAV planning scenario including stochastic transition
and rewards models, where none of the uncertainties were
known a priori. On average, the new cooperative learning
methods boosted the performance of CBBA up to 30% (7%
optimality improvement), while reducing the risk of failure
up to 8%.

For future work, we are interested in increasing the
learning speed of cooperative learners by taking advantage
of function approximators. Function approximation allows
generalization among the values of similar states often boost-
ing the learning speed. However, finding a proper function
approximator for a problem is still an active area of research,
as poor approximations can render the task unsolvable, even
with infinite amount of data. While in this work, we assumed
a static model for the planner, a natural extension is to
adapt the model with the observed data. We foresee that
this extension will lead to a more effective risk mitigation
approach as the transition model used for Monte-Carlo
sampling resembles the actual underlying dynamics with
more observed data.

ACKNOWLEDGMENTS

This work was sponsored by the AFOSR and USAF
under grant FA9550-09-1-0522 and Boeing Research &
Technology. The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of the Air Force Office of
Scientific Research or the U.S. Government.

REFERENCES

[1] J. Kim, “Discrete approximations to continuous shortest-path: Appli-
cation to minimum-risk path planning for groups of uavs,” in In Proc.
of the 42nd Conf. on Decision and Control, 2003, pp. 9–12.

[2] R. Weibel and R. Hansman, “An integrated approach to evaluating risk
mitigation measures for UAV operational concepts in the NAS,” in
AIAA Infotech@Aerospace Conference, 2005, pp. AIAA–2005–6957.

[3] J. Redding, A. Geramifard, H. Choi, and J. How, “Actor-critic policy
learning in cooperative planning,” in AIAA Guidance, Navigation and
Control Conference, 2010.

[4] J. Redding, A. Geramifard, A. Undurti, H. Choi, and J. How, “An
intelligent cooperative control architecture,” in American Control
Conference, 2010.

[5] R. A. Howard, “Dynamic programming and Markov processes,” 1960.
[6] M. Puterman, Markov Decision Processes: Discrete Stochastic Dy-

namic Programming. Wiley, 1994.
[7] M. L. Littman, T. L. Dean, and L. P. Kaelbling, “On the complexity

of solving Markov decision problems,” in In Proc. of the Eleventh
International Conference on Uncertainty in Artificial Intelligence,
1995, pp. 394–402.

[8] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelli-
gence, vol. 101, pp. 99–134, 1998.

[9] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Pearson Education, 2003.

[10] R. S. Sutton, “Learning to predict by the methods of temporal
differences,” Machine Learning, vol. 3, pp. 9–44, 1988.

[11] G. A. Rummery and M. Niranjan, “Online Q-learning using con-
nectionist systems (tech. rep. no. cued/f-infeng/tr 166),” Cambridge
University Engineering Department, 1994.

[12] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, “Incre-
mental natural actor-critic algorithms.” in NIPS, J. C. Platt, D. Koller,
Y. Singer, and S. T. Roweis, Eds. MIT Press, 2007, pp. 105–112.

[13] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE Trans. on Robotics, vol. 25
(4), pp. 912 – 926, 2009.

[14] R. Murphey and P. Pardalos, Cooperative control and optimization.
Kluwer Academic Pub, 2002.

[15] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming
(Optimization and Neural Computation Series, 3). Athena Scientific,
May 1996.

[16] S. Ponda, J. Redding, H.-L. Choi, J. P. How, M. A. Vavrina, and
J. Vian, “Decentralized planning for complex missions with dynamic
communication constraints,” in American Control Conference (ACC),
July 2010, pp. 3998–4003.

[17] R. I. Brafman and M. Tennenholtz, “R-MAX - a general polynomial
time algorithm for near-optimal reinforcement learning,” Journal of
Machine Learning, vol. 3, pp. 213–231, 2001.

Fig. 5: (a) Mission scenarios of interest, (b,c,d) Performance, optimality, and Risk of NAC,
Sarsa, CBBA, CNAC, and CSarsa algorithms at the end of the training session

system dynamics model to be adaptive [6, 7]. To relax assumption II, given a fixed state,
the risk associated with a proposed action by the learner is estimated using Monte-Carlo
sampling. The user defines a certain threshold, where actions with expected risk more than
this threshold are filtered. Assumption III is relaxed by allowing the model, incrementally
adjusting its parameter as the agent interacts with the system. This means given new sam-
pled trajectories, not only the learner changes its corresponding policy, but also the model
dynamics can adapt to the observed data to become more accurate. Once the accumulated
change to the model becomes significant, the cooperative planner replans accordingly.

To investigate the effectiveness of our new approach, we added 5% movement noise for
each UAV in the mission shown in Figure 5-a. This means moving along each edge has 95%
chance of success and 5% chance of staying in the same node. As for the baseline coop-
erative planner, CBBA [23] was implemented in two versions: aggressive and conservative.
The aggressive version used all remaining fuel cells in one iteration to plan the best set of
target assignments ignoring the possible noise in the movement. Algorithm 4 illustrates the
conservative CBBA algorithm. The input to the algorithm is the collection of UAVs (U).
First the current fuel of UAVs are saved and decremented by 3 (lines 1-2). Then on each
iteration, CBBA is called with the reduced amount of fuel cells. Consequently, the plan will
be more conservative compared to the case where all fuel cells are considered. If the result-
ing plan allows all UAVs to get back to the base safely, it will be returned as the solution.
Otherwise, UAVs with no feasible plan (i.e. Plan[u] = ø) will have their fuels incremented,
as long as the fuel does not exceed the original fuel value (line 8). Notice that aggressive
CBBA is equivalent to calling CBBA method on line 5 with the original fuel levels. The
iCCA algorithm with static model only took advantage of the conservative CBBA because
the noise assumed to be fixed at 40%. As for iCCA with adaptive model (AM-iCCA), the
planner switched from the conservative to the aggressive CBBA, whenever the noise estimate
dropped below 25%.

Figures 6 shows the results of learning methods (SARSA, iCCA, and AM-iCCA) together
with two variations of CBBA (conservative and aggressive) applied to the UAV mission plan-
ning scenario. Figure 6(a) represents the solution quality of each learning method after 105

steps of interactions. The quality of fixed CBBA methods were obtained through averaging
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Algorithm 4: Conservative CBBA

Input: UAVs
Output: Plan

1 MaxFuel← U.fuel
2 UAVs.fuel← UAVs.fuel− 3
3 ok← False
4 while not ok or MaxFuel = UAVs.fuel do
5 Plan←CBBA(UAVs)
6 ok← True
7 for u ∈ UAVs, Plan[u] = ø do
8 UAVs.fuel[u]← min(MaxFuel[u], UAVs.fuel[u] + 1)
9 ok← False

10 return Plan
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Fig. 6: Results of SARSA, CBBA-conservative, CBBA-Aggressive, iCCA and AM-iCCA
algorithms at the end of the training session in the UAV mission planning scenario. AM-
iCCA improved the best performance by 22% with respect to the allowed risk level of 20%.

over 10, 000 simulated trajectories, where on each step of the simulation a new plan was de-
rived to cope with the stochasticity of the environment. Figure 6(b) depicts the optimality of
each solution, while Figure 6(c) exhibits the risk of executing the corresponding policy. First
note that SARSA at the end of training yielded 50% optimal performance, together with
more than 80% chance of crashing a UAV. Both CBBA variations outperformed SARSA.
The aggressive CBBA achieved more than 80% optimality in cost of 25% crash probability,
while conservative CBBA had 5% less performance, as expected, it realized a safe policy
with rare chances of crashing. The iCCA algorithm improved the performance of the con-
servative CBBA planner again by introducing risk of crash around 20%. While on average it
performed better than that aggressive policy, the difference was not statistically significant.
Finally AM-iCCA outperformed all other methods statistically significantly, obtaining close
to 90% optimality. AM-iCCA boosted the best performance of all other methods by 22%
on average (Figure 6-a). The risk involved in running AM-iCCA was also close to 20%,
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matching the selected risk threshold value.

4 Data-Limited Model-Based Reinforcement Learning
In model-based reinforcement learning (MBRL) an explicit dynamics model of the world
is used to compute the policy. When the world dynamics model is unknown, as is often
the case, we can attempt to infer the optimal policy by collecting data about the world
through interactions with the environment. However, many real-world domains suffer from
being data-limited, where the cost of collecting data through interaction limits how much
training data is available to be used to build a dynamics model. When the true model is
unknown in MBRL, we typically assume a model class. Unfortunately, for some real-world
applications we cannot use the model class that contains the true world dynamics because
this model class is either unknown or computationally intractable. This can be overcome
by using an extremely large model (M), allowing us to capture complex world dynamics.
However, accurately fitting the parameters for these expressive model classes require a large
amount of training data.

We investigate two methods of model estimation in data-limited MBRL. First, we use
reduced-order dynamics models in order to effectively estimate the model parameters from
limited data. A reduced-order model class, M̃, is relatively small in comparison to the model
class containing the true world dynamics. Fitting the reduced-order model parameters, θ,
using a maximum likelihood approach can result in poor performance because the value of
states under such model can be far from their real value. Instead of solving for the values
for a given model m ∈M, we use the training data to estimate state values and then select
the model that results in the highest true expected reward. This is done by combining a
Monte-Carlo-like policy evaluation [27] for policy evaluation with a model gradient approach
for policy improvement.

The quantity we are interested in estimating, V (πm;mtrue), is the expected future re-
ward (value) of taking policy πm in the world mtrue. The typical approach for estimating
V (πm;mtrue) is Monte Carlo (MC) simulation, where πm is run in the true world to cal-
culate the estimate V̂ (πm;mtrue). This method of estimating the value of a policy based
on the accumulated reward from running it in the true world is called on-policy evaluation.
On-policy evaluation of all the policies πm for m ∈ M̂ is impossible since we generally have
an infinitely large model class. Importance sampling (IS) is a method of MC simulation
for off-policy evaluation. In IS, each trajectory’s accumulated reward is weighted by the
trajectory’s likelihood under the policy we are evaluating. In the standard IS approach, any
sampled trajectory from the data that took an action which did not agree with the action
from πm will not have an influence on the computation of V̂ (πm;mtrue). We initially assume
that an arbitrary policy πtrain was taken during training, resulting in π and πtrain rarely
agreeing on all actions taken throughout a trajectory and therefore a great deal of wasted
data and a high variance estimate of V̂ (πm;mtrue).

Minimizing the variance of V̂ (πm;mtrue) is equivalent to requiring less data to accurately
estimate V (πm;mtrue). To reduce the variance of V̂ (πm;mtrue) using IS we leverage two
insights.

• We can prevent a trajectory from having zero probability by replacing any portion of
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Fig. 7: Time stabilized versus number of episodes for the approximate model class fit using
maximum likelihood and MRMS are shown in red and blue, respectively. The discrete model
is a 7 × 11 × 11 × 11 discrete Markov model of the dynamics, whose performance is shown
in green. The error bars represent one standard error.

the trajectory that has zero probability under the evaluation policy πm with a non-zero
probability segment from the training data.

• A reduced order model provides both an approximation of the true dynamics and
value function, which we can use to account for world stochasticity by correcting each
trajectory’s accumulated reward.

To implement the trajectory replacement insight, we first find any trajectory segment
in the training data that has zero probability under πm, our evaluation policy. The zero
probability segment is then replaced with a randomly chosen segment from the training data
that has a non-zero probability under πm. Our second technique is implemented using the
method of control variates. A control variate is a random variable that is correlated with
a trajectory’s accumulated reward and is used to reduce the variance of V̂ (πm;mtrue). Our
control variate is formed using both the dynamics model m and V (πm;m), the value of
operating πm under m. We can additionally benefit from the property that the closer m is
to mtrue the greater the variance reduction. Once we obtain a on low variance estimate of
V (πm;mtrue), we turn to choosing a model m ∈ M̂ that maximizes V̂ (πm;mtrue). To find
this m we use a form of model likelihood gradient ascent.

One example problem is the hydrodynamic cart-pole problem, a fluid dynamics version
of the cart-pole benchmark problem. We collected a data set of approximately 45 minutes
of data from the hydrodynamic cart-pole system from a variety of poor controllers that was
segmented into episodes with a maximum length of 10 seconds. This resulted in 316 episodes
of batch training data.

Figure 7 shows the results of this experiment plotted for the three different approaches.
In red and blue are the returns of the approximate model class versus number of episodes
with model selection performed by maximum likelihood and MRMS, respectively. Shown in
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green is the performance of the large Markov model composed of the same 7× 11× 11× 11
grid as the value function and policy instead of the approximate model class.

For comparison purposes, the pole takes roughly 1-2 seconds to fall over, when given no
control actions. The plot shows that for 45 minutes of data neither the maximum likelihood
approximate model nor the large Markov model were able to achieve any statistically signif-
icant improvement in performance. Our approach, on the other hand, continually learned as
it saw more data and eventually achieved the performance of stabilizing for all 10 of its trials
after 316 episodes. Note that the error bars are drawn on the plot for MRMS’s performance
after 316 episodes of training.

In contrast to reduced-order models that have a finite size, our second approach is to
use Bayesian nonparametric models for MBRL. Our previous work [28–30] showed that
nonparametric approaches are well-suited for data-limited, poorly understood environments
because they let the amount of training data determine the sophistication of the model and
the Bayesian aspect helps the model to generalize to unseen data and also perform inference
on noisy data.

5 Learning & Game-theoretic Approaches to Dynamic

Vehicle Routing
A recurrent theme in all of the existing literature on dynamic vehicle routing (e.g., [31]) is
that demands are either customers that need to be picked up, raw material or merchandise to
be delivered, failures that must be serviced by a mobile repair person, or sites of suspicious
activity that must be inspected. Thus far, the possibility of having an adversarial agent
with limited capacity carry and place targets in the space from a central depot has not been
considered. We model this problem and its inherent pure conflict of interests as a zero-sum
game with two opponents: a vehicle moving at speed v that seeks to devise routing policies
that minimize the average waiting time of a target, from the moment it is placed in the space
until its location is visited; and an adversarial agent with unit capacity and speed, which aims
at maximizing this time strategically choosing the process according to which he will place
targets in the space. The fact that the agent has finite capacity, and therefore needs to return
to the depot between successive rounds of target placements, induces a dependence between
the temporal rate and the spatial distribution of targets. We analyze the game under light
and heavy load regimes, and characterize the equilibria. The latter is the most interesting,
for which we show that a TSP-based routing policy and a power-law spatial distribution are
optimal. The latter emerges as the unique optimum of the problem of maximizing a nowhere
differentiable convex integral functional over the space of probability distributions, which is
solved using Fenchel duality [32, 33] and a logarithmic transformation to decouple the spatio-
temporal dependence. Finally, we prove that the game has a value under any regime, and
provide an expression for it as a function of v. Our results match and theoretically justify
the so-called Rossmo’s formula [34], an empirically-determined law which is at the basis of
geographic profiling, a criminal investigative methodology that analyzes the locations of a
connected series of crimes to determine the most probable area of offender residence.
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(a) Policy with 500 nodes (0.59s).
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(b) Policy with 1000 nodes (4.9s).
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(c) Policy with 4000 nodes (167.5s).
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(d) Contour of J̃500
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(e) Contour of J̃1000

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

 

 

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

(f) Contour of J̃4000

Fig. 8: System with stochastic single integrator dynamics in cluttered environment. With appropriate cost structure assigned
to the goal and obstacle regions, system reaches goal in upper right corner and avoids obstacles. The standard deviation of
noise in x and y directions is 0.26. Anytime control policies in Fig. 8(a)-8(c) indicate that iMDP quickly explores the state
space and refines control policies over time. Corresponding contours of approximated cost-to-go are shown in Fig. 8(d)-8(f).

6 Incremental Sampling-based Algorithms for Planning

and Learning Under Uncertainty
In this effort, we consider a class of continuous-time, continuous-space stochastic optimal
control problems. Building on recent advances in sampling-based algorithms for deterministic
path planning [35], we propose a novel algorithm called the incremental Markov Decision
Process (iMDP) to incrementally compute control policies that approximate the optimal
policy with arbitrary well accuracy in terms of the expected cost. The main idea behind the
algorithm is to generate a sequence of finite discretizations of the original problem through
random sampling of the state space. At each iteration, the discretized problem is a Markov
Decision Process that serves as an incrementally refined model of the original problem. We
show that (i) the sequence of value functions induced by the optimal control policies for each
of the discretized problems converge to the value function of the original stochastic optimal
control problem, and (ii) the value function of the MDP at each iteration can be computed
efficiently in an incremental manner. The proposed algorithm provides an anytime approach
to the computation of optimal control policies, both for simulation-based or (reinforcement)
learning-based approaches.

7 Strategic Dynamic Vehicle Routing with

Spatio-Temporal Dependent Demands
In the recent past, considerable efforts have been devoted to the study of dynamic vehicle
routing problems, where the objective is to cooperatively assign and schedule demands among
a team of vehicles for service requests that are realized in a dynamic fashion over a region of
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interest [36, 37]. Throughout the existing literature, demands are assumed to be generated
over time by an exogenous process that is unaffected by the routing policies, and in particular
is non-adversarial [38]. However, there are many scenarios (e.g. surveillance missions) where
there is an inherent conflict of interest between the process generating demands and the
system planner designing routing policies. Moreover, even in non-adversarial scenarios the
system planner may not have perfect information about the underlying process generating
demands and a study of strategic dynamic vehicle routing can add insight into policies that
are robust with respect to such uncertainty. To the best of our knowledge, settings with
these characteristics have not yet been studied.

In this work [39] we consider the following problem: a system planner seeks to design
dynamic routing policies for a team of vehicles that minimize the average waiting time of a
typical demand, defined as the time difference between the moment the demand is placed in
the region until its location is visited by a vehicle; while an adversarial agent with unitary
capacity operating from a depot, aims at the opposite, strategically choosing the spatio-
temporal stochastic process of demands. A novel feature of this setup is that, since demand
generation is tied to the motion of the agent, there is a dependence between the spatial
and temporal aspect of the demand generation process: the point process is thus completely
specified by the spatial distribution. This is in stark contrast with the conventional setup
for dynamic vehicle routing problems, where the spatial and temporal components of the
demand generation process are typically assumed to be independent. We model the problem
as a zero-sum game with two players: the system planner and the adversarial agent, with the
average system time being the utility function. In the limiting regime where vehicles travel
arbitrarily slower than the adversarial agent, we show that the game has a finite value and
we characterize an equilibrium (or saddle point) of the game. This saddle point is shown to
consist of a routing policy performing successive traveling salesperson (TSP) tours through
outstanding demands and a unique power-law spatial density centered at the depot location.
The saddle point routing policy is the one proposed in [37], where it is shown to be optimal
for the setup where the demands are generated by an arbitrary spatio-temporal renewal
process with a very high arrival rate. In order to rigorously determine the saddle point
spatial distribution for the adversary we rely on Fenchel (conjugate) duality [40] and results
from [33, 41] concerning the maximization of concave integral functionals subject to linear
equality constraints. Since lower bounds for the average system time for dynamic vehicle
routing under heavy load often take the form of concave integral functionals, the convex
analytic approach applied in this work could be used more generally to formally analyze the
performance of policies under worst case scenarios. Finally, incorporating the estimation of
the spatial density into the problem could provide a natural framework for the formal study
of geographic profiling [42], where the objective is to determine the most probable area of a
predator’s hideout (“anchor point”) based on observed attack locations.

8 Learning in Persistent Search: A Constrained Game

Approach
We consider a class of dynamic vehicle routing problems, known as persistent search [9],
in which a vehicle with limited sensor range aims to detect targets that arrive dynamically
over time. A common assumption made in such settings [10–12] is that the distribution
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of arrivals is known a priori to the searcher. Both the analysis and tools that have been
developed previously have heavily relied on the knowledge of the distribution. To bridge the
gap between optimistic assumptions and what can be done in practice, it is often suggested
that the distribution be replaced with its empirical value [12], and hope that the results ex-
tend. In our recent work [8], we revisit these assumptions from a critical point of view, and
argue that in practice, even if the targets are i.i.d samples from the same distribution over a
compact support, one cannot learn the distribution at a rate that is fast enough in the sense
that the gap between nominal performance index (assuming the knowledge of distribution)
and that obtained by empirical mean is infinite. This is a direct consequence of the results
in [43], which asserts that a non-parametric distribution cannot be learned at a rate faster
than Ω(1/n) where n is the number of samples. Since the number of samples grows linearly
with time, the accumulated error of estimation diverges. This implies that the performance
index diverges almost surely from its nominal value since it depends somehow linearly on
the quality of estimation.
The above results imply that it is not possible to provide any competitive analysis with
respect to a fully informed algorithm that knows the distribution. Nevertheless, one can
provide performance guarantees by modeling the problem in the language of constrained
games. To do so, we assume that the searcher is playing a game with nature in which the
samples are distributed in an adversarial manner that is consistent with data. In other words,
we find the worst-case model of nature that can explain the past observations and find a
search policy that is optimal against such adversarial model. The resulting optimization
objective is non-convex, but is nevertheless separable [44] and can be approximated arbi-
trarily well with SOS methods [13]. The resulting solution can, in the presence of a smooth
distribution that generates the data, guarantee a minimum level of performance.
Having established an effective method for solving the described constrained game, we move
to an online setting where the vehicle is allowed to update its policy over time as data
becomes available. Naturally, a policy in such settings serves two goals: information acqui-
sition and target detection. Not surprisingly, whether a composition of optimal planner and
empirical distribution is optimal depends on how close the two goals are. For example, if
the goal is to minimize the average detection time the two goals are aligned and thus, the
naive composition of optimal planner and estimator is provably competitive against what
any other algorithm can do. However, if the goal was to minimize the sum of waiting times
of arrivals until detection, then such compositions would not be close to optimal. One ad-
vantage of the SOS approach is that it allows us to compute near optimal policies even in
cases where information acquisition and service goals tend to compete.
So far our approach has been model based learning, in the sense that we assume the ex-
istence of an oracle that generates i.i.d samples from a smooth function and reveals them
to the searcher over time. We plan to relax this assumption and move to a setting where
we can learn the policy directly from data. For that, however, we need to fix a hypothesis
class that is rich enough to include the optimal policy. This is an indispensable ingredient
of any learning mechanism. If one conjectures that the optimal policy is smooth ( which is a
weaker assumption than assuming underlying distribution is smooth and much weaker than
assuming the underlying distribution is known), then it should be possible to approximate
the optimal policy arbitrarily well with SOS polynomials over a compact region. We plan to
test this conjecture for a class of DVR problems including persistent search.
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